CS Inequality Overview
The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality)
Statement:
Let a 1 , a 2 , ⋯ , a n , b 1 , b 2 , ⋯ , b n ∈ C a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n \in \mathbb{C} a 1 , a 2 , ⋯ , a n , b 1 , b 2 , ⋯ , b n ∈ C then we have the following:
∣ ∑ i = 1 n a i b ‾ i ∣ 2 ≤ ( ∑ i = 1 n ∣ a i ∣ 2 ) ( ∑ i = 1 n ∣ b i ∣ 2 ) \left|\sum_{i=1}^n a_i\overline b_i\right|^2\leq \left(\sum_{i=1}^n|a_i|^2 \right)\left(\sum_{i=1}^n|b_i|^2\right) i = 1 ∑ n a i b i 2 ≤ ( i = 1 ∑ n ∣ a i ∣ 2 ) ( i = 1 ∑ n ∣ b i ∣ 2 )
and equality holds iff a i = t b i a_i=tb_i a i = t b i for some t ∈ C t\in \mathbb{C} t ∈ C ∀ i ∈ { 1 , 2 , 3 , ⋯ n } \forall i\in \{1,2,3,\cdots n \} ∀ i ∈ { 1 , 2 , 3 , ⋯ n }
Proof:
Consider the function f : C → R f:\mathbb{C} \rightarrow \mathbb{R} f : C → R defined by
f ( t ) = ∑ i = 1 n ∣ a i − t b i ∣ 2 ( R e m e m b e r ) \begin{equation}
f(t)=\sum_{i=1}^n |a_i-tb_i|^2 \quad (Remember)
\end{equation} f ( t ) = i = 1 ∑ n ∣ a i − t b i ∣ 2 ( R e m e mb er )
Note:
∣ z ∣ 2 = z z ‾ \begin{equation}
|z|^2=z\overline z
\end{equation} ∣ z ∣ 2 = z z
Using (2) in (1) we get,
f ( t ) = ∑ i = 1 n ( a i − t b i ) ( a i − t b i ‾ ) = ∑ i = 1 n ( a i − t b i ) ( a i ‾ − t ‾ b i ‾ ) = ∑ i = 1 n ( ∣ a i ∣ 2 − ( a i b i ‾ t ‾ + a i ‾ b i t ) + ∣ b i ∣ ∣ t ∣ 2 ) \begin{align*}
f(t)=\sum_{i=1}^n (a_i-tb_i)(\overline{a_i-tb_i}) \\
=\sum_{i=1}^n (a_i-tb_i)(\overline{a_i}-\overline{t}\overline{b_i})\\
=\sum_{i=1}^n \left(|a_i|^2-(a_i\overline{b_i} \overline{t}+\overline{a_i}b_it)+|b_i||t|^2\right)
\end{align*} f ( t ) = i = 1 ∑ n ( a i − t b i ) ( a i − t b i ) = i = 1 ∑ n ( a i − t b i ) ( a i − t b i ) = i = 1 ∑ n ( ∣ a i ∣ 2 − ( a i b i t + a i b i t ) + ∣ b i ∣∣ t ∣ 2 )
Now, putting t = x + i y t=x+iy t = x + i y in the above we get the following:
f ( x + i y ) = ( ∑ i = 1 n ∣ a i ∣ 2 ) − ( ∑ i = 1 n ( a i b i ‾ ( x + i y ‾ ) + a i ‾ b i ( x + i y ) ) ) + ( ∑ i = 1 n ∣ b i ∣ ) ∣ t ∣ 2 = A − 2 x ℜ ( B ) − i 2 y ℑ ( B ) + C ( x 2 + y 2 ) ( where A = ( ∑ i = 1 n ∣ a i ∣ 2 ) B = ∑ i = 1 n a i b ‾ i & C = ( ∑ i = 1 n ∣ b i ∣ ) ) \begin{align*}
f(x+iy)=\left(\sum_{i=1}^n |a_i|^2\right)-\left(\sum_{i=1}^n(a_i\overline{b_i} (\overline{x+iy})+\overline{a_i}b_i(x+iy))\right)+\\ \left(\sum_{i=1}^n|b_i|\right)|t|^2\\
=A-2x\Re(B)-i2y\Im(B)+C(x^2+y^2) \quad(\text{where }A=\left(\sum_{i=1}^n |a_i|^2\right)\\
B= \sum_{i=1}^n a_i\overline b_i \text{ \& } C=\left(\sum_{i=1}^n|b_i|\right))
\end{align*} f ( x + i y ) = ( i = 1 ∑ n ∣ a i ∣ 2 ) − ( i = 1 ∑ n ( a i b i ( x + i y ) + a i b i ( x + i y )) ) + ( i = 1 ∑ n ∣ b i ∣ ) ∣ t ∣ 2 = A − 2 x ℜ ( B ) − i 2 y ℑ ( B ) + C ( x 2 + y 2 ) ( where A = ( i = 1 ∑ n ∣ a i ∣ 2 ) B = i = 1 ∑ n a i b i & C = ( i = 1 ∑ n ∣ b i ∣ ) )
Now, completing the squares and organising terms we get,
C ( ( x − ℜ ( B ) C ) 2 + ( y − ℑ ( B ) C ) 2 ) + A − ∣ B ∣ 2 C = f ( t ) \begin{align}
C\left(\left(x-\frac{\Re(B)}{C}\right)^2 + \left(y-\frac{\Im(B)}{C}\right)^2 \right)+A-\frac{|B|^2}{C}=f(t)
\end{align} C ( ( x − C ℜ ( B ) ) 2 + ( y − C ℑ ( B ) ) 2 ) + A − C ∣ B ∣ 2 = f ( t )
From equation (1) we get f ( t ) ≥ 0 f(t)\geq 0 f ( t ) ≥ 0 ∀ t ∈ C \forall t \in \mathbb{C} ∀ t ∈ C and hence from equation (3) we get that for t = ℜ ( B ) C + i ℑ ( B ) C t=\frac{\Re(B)}{C}+i\frac{\Im(B)}{C} t = C ℜ ( B ) + i C ℑ ( B ) also f ( t ) ≥ 0 f(t)\geq 0 f ( t ) ≥ 0 . That is A − ∣ B ∣ 2 C ≥ 0 ⇒ ∣ B ∣ 2 ≤ A C A-\frac{|B|^2}{C}\geq 0 \Rightarrow |B|^2\leq AC A − C ∣ B ∣ 2 ≥ 0 ⇒ ∣ B ∣ 2 ≤ A C .
Download the pdf of the above article here