CS Inequality Overview

The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality)

Statement:

Let a1,a2,,an,b1,b2,,bnCa_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n \in \mathbb{C} then we have the following:

i=1naibi2(i=1nai2)(i=1nbi2)\left|\sum_{i=1}^n a_i\overline b_i\right|^2\leq \left(\sum_{i=1}^n|a_i|^2 \right)\left(\sum_{i=1}^n|b_i|^2\right)
and equality holds iff ai=tbia_i=tb_i for some tCt\in \mathbb{C} i{1,2,3,n}\forall i\in \{1,2,3,\cdots n \}

Proof:

Consider the function f:CRf:\mathbb{C} \rightarrow \mathbb{R} defined by

f(t)=i=1naitbi2(Remember)\begin{equation} f(t)=\sum_{i=1}^n |a_i-tb_i|^2 \quad (Remember) \end{equation}

Note:
z2=zz\begin{equation} |z|^2=z\overline z \end{equation}

Using (2) in (1) we get,

f(t)=i=1n(aitbi)(aitbi)=i=1n(aitbi)(aitbi)=i=1n(ai2(aibit+aibit)+bit2)\begin{align*} f(t)=\sum_{i=1}^n (a_i-tb_i)(\overline{a_i-tb_i}) \\ =\sum_{i=1}^n (a_i-tb_i)(\overline{a_i}-\overline{t}\overline{b_i})\\ =\sum_{i=1}^n \left(|a_i|^2-(a_i\overline{b_i} \overline{t}+\overline{a_i}b_it)+|b_i||t|^2\right) \end{align*}

Now, putting t=x+iyt=x+iy in the above we get the following:
f(x+iy)=(i=1nai2)(i=1n(aibi(x+iy)+aibi(x+iy)))+(i=1nbi)t2=A2x(B)i2y(B)+C(x2+y2)(where A=(i=1nai2)B=i=1naibi & C=(i=1nbi))\begin{align*} f(x+iy)=\left(\sum_{i=1}^n |a_i|^2\right)-\left(\sum_{i=1}^n(a_i\overline{b_i} (\overline{x+iy})+\overline{a_i}b_i(x+iy))\right)+\\ \left(\sum_{i=1}^n|b_i|\right)|t|^2\\ =A-2x\Re(B)-i2y\Im(B)+C(x^2+y^2) \quad(\text{where }A=\left(\sum_{i=1}^n |a_i|^2\right)\\ B= \sum_{i=1}^n a_i\overline b_i \text{ \& } C=\left(\sum_{i=1}^n|b_i|\right)) \end{align*}

Now, completing the squares and organising terms we get,
C((x(B)C)2+(y(B)C)2)+AB2C=f(t)\begin{align} C\left(\left(x-\frac{\Re(B)}{C}\right)^2 + \left(y-\frac{\Im(B)}{C}\right)^2 \right)+A-\frac{|B|^2}{C}=f(t) \end{align}

From equation (1) we get f(t)0f(t)\geq 0 tC\forall t \in \mathbb{C} and hence from equation (3) we get that for t=(B)C+i(B)Ct=\frac{\Re(B)}{C}+i\frac{\Im(B)}{C} also f(t)0f(t)\geq 0. That is AB2C0B2ACA-\frac{|B|^2}{C}\geq 0 \Rightarrow |B|^2\leq AC.


Download the pdf of the above article here